C.U.SHAH UNIVERSITY Summer Examination-2022

Subject Name: Complex Analysis Subject Code:5SC01COA1 Semester: 1 Date: 25/04/2022

Branch: M.Sc. (Mathematics) Time: 11:00 To 02:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions Q-1 (07)**a.** Is $f(z) = z + \overline{z}$ real valued function? (01)**b.** State C- R equation in polar form. (01)c. State De Moivre's theorem. (01)**d.** Define Entire function and give one example of it. (02)e. Prove that $\sin(ix) = i \sin hx$. (02)Q-2 Attempt all questions (14)**a.** Suppose f(z) = u + iv, $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$, then (06)prove that $\lim_{z \to z_0} f(z) = w_0$ if and only if $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$ **b.** Prove that composition of continuous function is continuous. (04)**c.** Prove that $(1 + i\sqrt{3})^n + (1 - i\sqrt{3})^n = 2^{n+1}\cos(\frac{n\pi}{3})$. (04)**O-2** Attempt all questions (14) **a.** State and prove C – R equation for an analytic function. (06)(3 1 3 3 1 3

b. If
$$f(z) = \begin{cases} \frac{ax^3 - by^3}{ax^2 + by^2} + i\frac{ax^3 + by^3}{ax^2 + by^2} & , z \neq 0 \\ 0 & , z = 0 \end{cases}$$
 then prove that C-R (04)

equations are satisfied at origin.

c. Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic. Find harmonic (04)conjugate of u(x, y).

Q-3	0	Attempt all questions If $f(z)$ is regular function of z then prove that	(14) (05)
	a.	If $f(z)$ is regular function of z then prove that	(05)
		$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	
	b.	Evaluate $\int_{c} \frac{dz}{z^{2}+9}$ where <i>c</i> is (a) $ z - 3i = 4$ (b) $ z = 5$.	(05)
	c.	Evaluate: $\int_c \frac{e^z}{z(z-1)^3} dz$ where $c: z = 2$.	(04)
		0R	
Q-3		Attempt all questions	(14)
	a.	State and prove Cauchy's Theorem.	(07)
	b.	State and prove chain rule for derivatives.	(07)
0.4		SECTION – II	(07)
Q-4		Attempt the Following questions	(07)
	a.	Define: (i) Pole (ii) Removable singularity.	(02)
	b.	Which are the fixed points of $w = \frac{5z-4}{5+z}$?	(02)
	c.	State Maximum modulus principal.	(01)
	d.	Write Maclaurin's series of cos z.	(01)
	e.	Give an example of removable singularity.	(01)
Q-5		Attempt all questions	(14)
χ-	a.	State and prove fundamental theorem of algebra.	(06)
	b.		(04)
		Evaluate $\iint_{C} \frac{z}{(z-2)^{2}(z-1)} dz; c: z-2 = 0.5$ by using Cauchy's residue	
		theorem.	(04)
	c.	Expand $f(z) = \frac{1}{z}$ as a Taylor's series about the point $z = 1$.	(04)
05		OR Attempt all quastions	(14)
Q-5	a.	Attempt all questions Integrate the function $f(x) = (-x)^2$ form 0 to 2 wineth is from (0, 0) to	(14) (06)
		Integrate the function $f(z) = (\overline{z})^2$ from 0 to $2+i$ path is from $(0,0)$ to	(00)
		(2,0) along the real axis and then from $(2,0)$ to $(2,1)$.	
	b.	Find bilinear transformation which maps the points $z = 0, -1, i$ onto $w = i, 0 \infty$.	(04)
	c.	Expand Laurent's series $\frac{1}{z(z-1)^2}$ at the point $z = 1$.	(04)
	ι.	$\sum_{z=1}^{z} z(z-1) ^2 = 1.$	
Q-6		Attempt all questions	(14)
	a.	State and prove Cauchy's inequality and deduce Liouville's theorem.	(07)
	b.	State and prove Taylor's theorem.	(07)
		OR	
Q-6		Attempt all Questions	(14)
	a.	State and prove residue theorem.	(07)
	b.	Evaluate: $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$	(07)
		$\sim (x^{-+1})(x^{-+4})$	

